Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles.

نویسندگان

  • K Scholten
  • F I Bohrer
  • E Dattoli
  • W Lu
  • E T Zellers
چکیده

This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Densely integrated array of chemiresistor vapor sensors with electron-beam patterned monolayer-protected gold nanoparticle interface films.

Use of electron-beam induced crosslinking to pattern films of monolayer-protected gold nanoparticles (MPNs) onto a chemiresistor (CR) sensor array is described. Each of the four CRs comprises a 100 µm(2) set of interdigital electrodes (IDEs) with 100 nm widths and spaces, separated from adjacent devices by 4 µm. Films of four MPNs, each with a different thiolate monolayer, were successively pat...

متن کامل

Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.

A scalable and versatile method for the large-scale synthesis of tungsten trioxide nanowires and their arrays on a variety of substrates, including amorphous quartz and fluorinated tin oxide, is reported. The synthesis involves the chemical-vapor transport of metal oxide vapor-phase species using air or oxygen flow over hot filaments onto substrates kept at a distance. The results show that the...

متن کامل

A nanoparticle-coated chemiresistor array as a microscale gas chromatograph detector for explosive marker compounds: flow rate and temperature effects.

The effects of flow rate and temperature on the performance of a microscale gas chromatographic (μGC) detector consisting of a chemiresistor (CR) array coated with different thiolate-monolayer-protected gold nanoparticles (MPNs) are described with respect to the analysis of three gas-phase markers of the explosive trinitrotoluene (TNT): 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT)...

متن کامل

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin  layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...

متن کامل

Title MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITO Catalyzed by Au Nanoparticles

High-quality and density-tunable GaAs nanowires (NWs) are directly grown on indium tin oxide (ITO) using Au nanoparticles (NPs) as catalysts by metal organic chemical vapor deposition (MOCVD). Au catalysts were deposited on ITO glass substrate using a centrifugal method. Compared with the droplet-only method, high-area density Au NPs were uniformly distributed on ITO. Tunable area density was r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2011